Bicaudal C mutation causes myc and TOR pathway up-regulation and polycystic kidney disease-like phenotypes in Drosophila

نویسندگان

  • Chiara Gamberi
  • David R Hipfner
  • Marie Trudel
  • William D Lubell
چکیده

Progressive cystic kidney degeneration underlies diverse renal diseases, including the most common cause of kidney failure, autosomal dominant Polycystic Kidney Disease (PKD). Genetic analyses of patients and animal models have identified several key drivers of this disease. The precise molecular and cellular changes underlying cystogenesis remain, however, elusive. Drosophila mutants lacking the translational regulator Bicaudal C (BicC, the fly ortholog of vertebrate BICC1 implicated in renal cystogenesis) exhibited progressive cystic degeneration of the renal tubules (so called "Malpighian" tubules) and reduced renal function. The BicC protein was shown to bind to Drosophila (d-) myc mRNA in tubules. Elevation of d-Myc protein levels was a cause of tubular degeneration in BicC mutants. Activation of the Target of Rapamycin (TOR) kinase pathway, another common feature of PKD, was found in BicC mutant flies. Rapamycin administration substantially reduced the cystic phenotype in flies. We present new mechanistic insight on BicC function and propose that Drosophila may serve as a genetically tractable model for dissecting the evolutionarily-conserved molecular mechanisms of renal cystogenesis.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Genetic Diagnosis of a Lethal Form of Autosomal Recessive Polycystic Kidney Disease

Background Autosomal recessive polycystic kidney disease (ARPKD; OMIM number 263200) is a severe early onset hereditary form of polycystic kidney and liver disease. Case Report In the current study, we present a consanguineous couple with a history of an affected son with polycystic kidney disease (PKD), hepatic failure and epileptic seizures who died at the age of 8 months. Both parents were h...

متن کامل

Loss of Polycystin-1 Inhibits Bicc1 Expression during Mouse Development

Bicc1 is a mouse homologue of Drosophila Bicaudal-C (dBic-C), which encodes an RNA-binding protein. Orthologs of dBic-C have been identified in many species, from C. elegans to humans. Bicc1-mutant mice exhibit a cystic phenotype in the kidney that is very similar to human polycystic kidney disease. Even though many studies have explored the gene characteristics and its functions in multiple sp...

متن کامل

c-myc-induced apoptosis in polycystic kidney disease is independent of FasL/Fas interaction.

Apoptosis is a critical early cellular event in the development of polycystic kidney disease (PKD) in humans and mice. In the SBM transgenic model of PKD, both apoptosis and proliferation are c-myc driven and are independent of p53 and Bcl-2 pathways. On the basis of recent evidence implicating the FasL/Fas pathway in c-myc-induced apoptosis, we investigated the potential interaction of these p...

متن کامل

The polycystic kidney disease-related proteins Bicc1 and SamCystin interact.

Mutations in either the Bicaudal-C or the Anks6 gene which encode the Bicc1 and SamCystin proteins respectively cause formation of renal cysts in rodent models of polycystic kidney disease, however their role in the mammalian kidney is unknown. Immunolocalization studies demonstrated that, unlike many other PKD-related proteins, SamCystin and Bicc1 do not localize to the primary cilia of cultur...

متن کامل

Identification of a Novel Intragenic Deletion of the PHKD1 Gene in a Patient with Autosomal Recessive Polycystic Kidney Disease

Background Autosomal recessive polycystic kidney disease (ARPKD) is caused by mutations in the PKHD1gene. In the present study, we describe a severe case of ARPKD carrying a point mutation and a novel four-exon deletion of PKHD1 gene. Materials and Methods The PKHD1, PKD1 and PKD2 ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 13  شماره 

صفحات  -

تاریخ انتشار 2017